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We consider a system of four partial differential equations modelling the dynamics of
two populations interacting via chemical agents. Classes of non-trivial equilibrium solu-
tions are studied and a rescaled total biomass is shown to play the role of a bifurcation
parameter.
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1. Introduction

Among all forms of chemosensitivity in which the motion of living cells in organisms
is regulated by chemical agents, chemotaxis appears to have particular relevance in
many branches of biology. The phenomenon, i.e. the movement of living cells or
organisms under the influence of the concentration gradient of a chemical substance
- often secreted by the cells or organisms themselves - is considered to be a key
factor in morphogenesis, in regulating life cycles of some protozoa, in angiogenesis
and vascularization of solid tumors, in seasonal migration of some animal species
and so on.

The attempt to study and simulate this phenomenon by means of a mathematical
model dates back to 1970, when E.F.Keller and L.A.Segel [17] proposed a model
describing displacement and mass conservation for the density A(x, t) of the living
species and for the concentration P (x, t) of the chemical substance:

∂A

∂t
= div

(

DA∇A − αA∇P
)

, (1.1)

∂P

∂t
= χA − δP + div

(

DP∇P
)

. (1.2)

In (1.1) it is assumed that the flux induced by chemotaxis is proportional to A(x, t)
and to the gradient of the concentration of the chemoattractant. Concerning the
evolution of P (x, t), the model postulates a production rate proportional to A and
a linear decay of P itself. Of course, the terms containing DA and DP in (1.1) and
(1.2) represent linear diffusion. The coefficients α, χ, δ are positive constants, al-
though more general situations where also considered including nonlinear diffusivity
and chemotactic sensitivity.

Equations (1.1) and (1.2) are supplemented with zero flux boundary conditions
and with suitable initial conditions.

The model has been studied extensively, especially in the last decade. For a
comprehensive review of the literature the reader is referred to [14]. We confine
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2 Equilibrium of Two Populations Subjected to Chemotaxis

ourselves to recalling that the well-posedness of the mathematical problem and
qualitative properties of the solutions have been investigated also in nonlinear cases
(see e.g. [1],[2],[5],[20],[28],[31],[33] as well as [22],[18]). A relevant feature of (1.1)-
(1.2) that attracted the attention of many researchers is the possible occurrence of
blow-up of solutions for space dimensions n ≥ 2. This was suggested by [3], following
[21], and proved by [16] for n = 2, provided that the initial mass

∫

Ω
A dx exceeds

a threshold value, whereas (see also [19]) global existence is granted under mild
assumptions if the initial mass is small enough, as well as in one space dimension
without any limitation on the initial mass.

In [8] (see also e.g. [10] and [13]) it was shown that the problem admits a radial
symmetric solution blowing up at t = T and ehaving like a δ function in z = 0, a
feature corresponding to the so-called chemotactical collapse i.e. to the situation in
which a finite biomass concentrates in a single point.

Actually the meaning of this feature of the model is that chemotaxis can trigger a
crucial modification in the biological behaviour of a population that can be identified
with a steep-change self-organization mechanisms.

There are cases in which it is preferable to prevent the mathematical model
from exhibiting blow-up. To this end the concept of “maximum packing” has been
introduced ([11], [23], [24]).

Nonsymmetric blow-up was treated in [12], [15], [30] and symmetrization tech-
niques where used in [4].

Additional interesting properties emerge from the analysis of steady state solu-
tions and of their stability. Already in [17] the stability of the constant solutions
of (1.1), (1.2), A = A0, P = P0 = χA0/δ, was studied in the one-dimensional case.
It was shown that a constant solution is linearly stable if the total mass M of the
population does not exceed a critical value M̃ , depending on the coefficients of the
equation and on the width of the slab hosting the population∗.

Essentially M is a bifurcation parameter and, as it increases, the system admits
more and more non-constant stationary solutions of decreasing wavelength L/2πn.
A fundamental paper on this subject is [25] (see also [25], [32], [29]) where the study
of stationary solutions of a general class of Keller-Segel models (possibly including
nonlinear diffusivity and chemotactical sensitivity) is reduced to the analysis of a
scalar equation v′′ + f(v, λ) = 0.

In the present paper we will deal with a model in which two living populations
of densities A(x, t) and B(x, t) are present in the same domain; we assume that
each of them produces a chemical substance, whose concentrations will be denoted
by P (x, t) and Q(x, t), respectively. The rates of production will be proportional
to A and B, respectively, through constants χP and χQ and linear decay will be
assumed with constants δP and δQ.

We assume that P †attracts A and repels B, while Q acts in the opposite way.
Our analysis will be confined to the equilibrium solutions in the one-dimensional

case and with some simplifying assumptions on the coefficients with the aim of
pointing out some features which are peculiar to two species systems. In particular
we will identify a bifurcation parameter, producing periodic solutions of increasing
wave number. Numerical examples will be presented.

A very general problem has been considered in a recent paper [34] where an
arbitrary number of populations and chemical substances (called sensitivity agents)
is evolving in R

2. The conflict-free case is analyzed in detail, conditions of global
existence of solutions are discussed, and the possibility of existence of time periodic

∗The result is easily extended to more general cases. Moreover analysis of nonlinear instability
and its link with occurrence of blow-up is also possible ([6],[29])
†To save notation we use the symbols A,B, P,Q to denote populations and chemicals as well as
their concentrations.
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attractors is investigated. The main tool is a variational approach, based on the
definition of a free energy functional. The equilibria are thus found as the critical
points of such functional. The same method could be applied also to our case
(some changes are however necessary to take into account that we have to deal
with Neumann boundary conditions for the chemical agents); however rather than
focusing on general existence results, we are interested here on the characterization
of the non-trivial stationary solutions, their multiplicity, their periodicity in space
(connected to pattern formation) and so on. In order to obtain this information the
simplified form of the model was crucial to derive the detailed estimates we needed.

2. Basic equations

The system occupies the slab 0 < X < L. According to the discussion of the
previous section, the specific currents of the two populations have the form

jA = −DA ∂A

∂X
+ αAA

∂P

∂X
− βAA

∂Q

∂X
, (2.1)

jB = −DB ∂B

∂X
+ αBB

∂Q

∂X
− βBB

∂P

∂X
. (2.2)

Assuming that there is no flux across the boundaries X = 0, X = L, any station-
ary solution of the problem must satisfy jA = jB = 0. On the other hand, the
concentrations P and Q at equilibrium will be such that

DP ∂2P

∂X2
+ χP A − δP P = 0 (2.3)

DQ ∂2Q

∂X2
+ χQB − δQQ = 0 (2.4)

with ∂P
∂X

and ∂Q
∂X

vanishing on X = 0 and X = L.

Let us now perform the rescaling x = X
L

, a = A
â
, b = B

b̂
, p = P

p̂
, q = Q

q̂
, with

constants â, b̂, p̂ and q̂ to be selected later.
Denoting by prime the differentiation with respect to x, we have

a′ + a

(

−αAp̂

DA
p′ +

βAq̂

DA
q′

)

= 0, (2.5)

b′ + b

(

−αB q̂

DB
q′ +

βB p̂

DB
p′

)

= 0, (2.6)

p′′ +
χP L2

DP

â

p̂
a − δP L2

DP
p = 0, (2.7)

q′′ +
χQL2

DQ

b̂

q̂
b − δQL2

DQ
q = 0. (2.8)

We impose a first simplifying assumption, namely

αAαB = βAβB . (2.9)

Although the motivation of (2.9) is rather of technical nature, it is worth to outline
that the ratios αA/βA and βB/αA measure the relative sensitivity (of each of the
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two species) to chemical agents P and Q. Thus, (2.9) means that the relative
effectiveness of the two chemicals on the two species is the same.

Note also that, in case of vanishing diffusivities, (2.9) is a necessary condition
for the existence of non-constant stationary solutions.

Then, choosing

p̂ =
DA

αA
, q̂ =

DA

βA
, (2.10)

(2.5) and (2.6) become

a′ + a (−p′ + q′) = 0, (2.11)

b′ + bλ (−q′ + p′) = 0, (2.12)

where

λ =
αB

βA

DA

DB

(

=
βB

αA

DA

DB

)

. (2.13)

At this point (2.7), (2.8) suggest a natural choice of the remaining quantities â

and b̂ i.e.

â =
DP DA

αA

1

χP L2
, (2.14)

b̂ =
DQDA

βA

1

χQL2
. (2.15)

Hence

p′′ + a − µ2
P p = 0, p′(0) = p′(1) = 0 (2.16)

q′′ + b − µ2
Qq = 0, q′(0) = q′(1) = 0 (2.17)

where

µ2
P =

δP

DP
L2, µ2

Q =
δQ

DQ
L2. (2.18)

Subtracting (2.17) from (2.16) we obtain a differential equation for the function

η(x) = p(x) − q(x), (2.19)

provided that
δP

DP
=

δQ

DQ
, (2.20)

so that µ2
P = µ2

Q = µ2. The latter condition and (2.9) are physical limitations. Nev-
ertheless, as we shall see, the resulting system possesses a rather rich and interesting
set of solutions.

The differential equation for η is

η′′ + a − b − µ2η = 0. (2.21)

Of course, (2.11), (2.12) imply

a(x) = Ceη(x), (2.22)

b(x) = De−λη(x), (2.23)
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where C and D are positive integration constants. Then, any solution to our prob-
lem will satisfy, for some positive C and D, the boundary value problem

{

η′′(x) + Ceη(x) − De−λη(x) − µ2η(x) = 0, 0 < x < 1

η′(0) = η′(1) = 0
(2.24)

Conversely if (2.24) admits a solution η(x) for some positive constants C and D,
then a solution (a, b, p, q) to the original problem is provided. Indeed, a and b are
given by (2.22) and (2.23) and p is found by solving the following problem

p′′ − µ2p = −Ceη, p′(0) = p′(1) = 0. (2.25)

The linear differential equation is easily integrated by the classical method of La-
grange, finding the general solution

p(x) = [γ1 + c1(x)] eµx + [γ2 + c2(x)] e−µx, (2.26)

where

c1(x) = − C

2µ

∫ x

0

eη(ξ)−µξ dξ, (2.27)

c2(x) =
C

2µ

∫ x

0

eη(ξ)+µξ dξ. (2.28)

Then imposing the boundary conditions yields

γ1 = γ2 =
c2(1)e−µ − c1(1)eµ

eµ − e−µ
:= γ. (2.29)

Proposition 2.1. For any η(x) solving (2.24), p(x) defined by (2.26) is positive.
Indeed, p(0) = 2γ is positive by (2.29), (2.27), (2.28). Moreover, if a first

x̄ ∈ (0, 1] exists such that p(x̄) = 0, i.e.

(γ + c1(x̄))eµx̄ + (γ + c2(x̄))e−µx̄ = 0

since
p′(x̄)

µ
= (γ + c1(x̄))eµx̄ − (γ + c2(x̄))e−µx̄

(note that c′1e
µx + c′2e

−µx = 0 ), the sign of p′(x̄) is the sign of γ + c1(x̄). But

γ + c1(x̄) > γ + c1(1) =
e−µ

eµ − e−µ
(c2(1) − c1(1)) > 0.

Thus, a contradiction is found.
Similarly q(x) is the solution of

q′′ − µ2q = −De−λη(x)

(or simply q = p − η) and is positive by the same argument of Remark 2.1.

3. Finding nontrivial solutions

We have seen that, in our assumptions, solving (2.24) is equivalent to finding a
quadruple (a, b, p, q) satisfying (2.11), (2.12), (2.16), (2.17) (with µ2

P = µ2
Q).
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Of course (2.24) admits the trivial solutions η = η0 such that Ceη0 − De−λη0 −
µ2η0 = 0. In particular, η0 = 0 is a solution for any C = D. This corresponds
to a = b = M and p = q = M

µ2 . We are interested in non-trivial solutions of the

boundary value problem (2.24).
General bifurcation results were obtained in [25],[26] for the boundary value

problem
v′′ + f(v, c) = 0, v′(0) = v′(1) = 0 (3.1)

where c is a parameter in R
n (see also the already quoted papers [29],[32]). The

elegant argument developed there allows to select general classes of functions f(v, c)
for which (in particular) equilibrium can be successfully studied, but, conversely,
provides less information when cases of different nature are dealt with‡. We will
follow essentially the same strategy considered in the study of the “time map” of a
nonlinear oscillator, but will obtain the relevant advantage of relating the bifurcation
parameter to an appropriately rescaled mass of the two species.

Problem (2.24) can be interpreted as a problem for a nonlinear oscillator with
potential energy

V (η) = −1

2
µ2η2 + Ceη +

D

λ
e−λη (3.2)

with C > 0, D > 0. Our aim is to find a solution η(x) that have period 2
k

with k
integer.

It is immediately seen that V (η) → +∞ as η → ±∞ and that V ′′ is a convex
function. Therefore, only two cases can occur:

A. V has two minima V
(1)
min, V

(2)
min and one maximum Vmax,

B. V has just one minimum.

Case B includes limit situations (on the borderline with case A), namely

B1 V ′ vanishes in one more point, distinct from the minimum, where V ′′ =
0, V ′′′ 6= 0; in the minimum V (IV ) > 0,

B2 V ′ = V ′′ = V ′′′ = 0 at the minimum, where V (IV ) > 0.

We may pass from A to B either through B1 (the maximum tends to one of the
minima) or through B2 (the maximum and the two minima tend to coalesce).

In correspondence to the extrema of V we find the constant solutions. The
problem of finding nontrivial solutions to (2.11) (2.12) (2.16) (2.17) is equivalent
to:

Problem 3.1. Find C and D so that problem (2.24) has nonconstant solutions,
i.e. so that the nonlinear oscillator with potential energy (3.2) has solutions with
half-period 1

k
, k ∈ N.

We introduce the following classification of nontrivial solutions of (2.24).

Definition 3.1. The increasing branch of an oscillation of semiperiod 1 is a solution
of class 1 of problem 3.1. In a similar way we define class k solutions.

Of course, if η(x) is a class 1 solution, η(1− x) is also a solution of (2.24), with
η′(x) < 0 and η(0) > η(1). The same transformation generates solutions from class
k solutions.

‡For istance the assumptions of the basic Theorem 3.3 of [26] are not necessarily satisfied in our
problem.
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It is easy to realize that there are no other solutions.
For any C, D > 0 and µ2 given, we consider the problem:

η′′ + V ′(C, D, η) = 0, (3.3)

η(0) = η0, η′(0) = 0, (3.4)

with

V (C, D, η) = −1

2
µ2η2 + Ceη +

D

λ
e−λη. (3.5)

We define E = V (C, D, η0) as the energy of the nonlinear oscillator. So η0 and
η1 are “conjugate resting points” corresponding to the selected energy E. We may
suppose η0 < η1. The semiperiod of the oscillation can be expressed as a function
of E as follows:

T (E) =
1√
2E

∫ η1(E)

η0(E)

(

1 − V

E

)− 1
2

dη. (3.6)

A simple analysis of function V leads immediately to the determination of suffi-
cient conditions for the existence of nontrivial solutions. To this purpose we remark
that if E approaches a value corresponding to a maximum or a horizontal inflection
point of V , then T (E) → +∞. Another basic feature of T (E) is preoved in

Proposition 3.1. We have
lim

E→∞
T (E) = 0. (3.7)

Proof. When E grows to +∞ we may approximate η0, η1 as follows

η0(E) ' 1

λ
log

D

λE
, (3.8)

η1(E) ' log
E

C
, (3.9)

so that

η1(E) − η0(E) ' log
λ

1
λ E1+ 1

λ

CD
1
λ

. (3.10)

After the usual substitution η = η0 + (η1 − η0)y, (3.6) yields

T =
η1 − η0√

2E

∫ 1

0

dy
√

1 − V
E

. (3.11)

Letting E go to +∞, the ratio V
E

tends to zero uniformly in any interval (ε, 1− ε),
ε being a fixed positive arbitrarily small number.

Since the factor η1−η0√
E

tends to zero as (1+ 1
λ
)E− 1

2 log E, we only have to study

the integrals in (0, ε) and in (1 − ε, 1).

For y ∈ (1 − ε, 1) the dominating term in V
E

is

V

E
' C

E
eη0+(η1−η0)y '

[

λCD
1
λ

(λE)1+
1
λ

]1−y

. (3.12)
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Putting

Z =
λCD

1
λ

(λE)1+
1
λ

< 1, (3.13)

we have to calculate

∫ 1

1−ε

(

1 − Z1−y
)− 1

2 dy =

∫ ε

0

(1 − Zz)
− 1

2 dz (3.14)

Introducing ζ = Zz we write the same integral as

1

| log Z|

∫ 1

Zε

(1 − ζ)−
1
2 ζ−1 dζ = (3.15)

2

| log Z|

∫

√
1−Zε

0

dY

1 − Y 2
=

1

| log Z| log
1 +

√
1 − Zε

1 −
√

1 − Zε
.

For E >> 1 i.e. Z << 1 it behaves like |logZε|
|logZ| = ε.

A similar conclusion holds for the integral on (0, ε).
Thus it is confirmed that

T (C, D, E) ' 1√
2
(1 +

1

λ
)E− 1

2 log E (3.16)

for E >> 1.

As a consequence of the above properties we deduce the following

Proposition 3.2. In case A consider the two families of oscillations corresponding

to energies in the intervals (V
(1)
min, Vmax), (V

(2)
min, Vmax). Let T

(1)
min, T

(2)
min be the

semiperiods of the linearized oscillations near the respective minima. Then if T
(i)
min <

1 there are class k solutions with energy in (V
(i)

min, Vmax) for all k such that 1/k >
Tmin. In addition, there are class k solutions for all k ∈ N with suitable values of
E > Vmax.

Case B1 is quite similar, because the horizontal inflection point has the same
effect as the maximum (i.e. produces a singularity of T ).

In case B2 the period tends to +∞ when E ↓ Vmin and therefore the existence
of class k solution is guaranteed for any k.

In the remaining situations of case B we can say that there exist solutions of
class k for all those integers k such that 1/k < Tmin, where Tmin is the semiperiod
of the linearized oscillations near the only minimum of V .

4. Determination of regions in the (C, D) plane in which class k solutions
exist.

Our next aim is to characterize the sets of points in the (C, D) plane such that
V ′′(C, D, η) has a prescribed value in one of the extremal points for V . These curves
have the parametric equations V ′(C, D, η) = 0, V ′′(C, D, η) = (θ − 1)µ2, i.e.

{

Ceη − De−λη = µ2η,

Ceη + λDe−λη = µ2θ.
(4.1)
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We are primarily interested in nonnegative values of V ′′ and therefore we start the
analysis of (4.1) from the case θ ≥ 1.

We have

C =
µ2

1 + λ
(θ + λη)e−η, (4.2)

D =
µ2

1 + λ
(θ − η)eλη . (4.3)

Here η is a parameter ranging in the interval [− θ
λ
, θ]; note that (4.2), (4.3) define a

nonsingular curve for any θ > 1, starting from the D axis in

D0 θ =
µ2θ

λ
e−θ, η = − θ

λ
, (4.4)

intersecting the line C = D (η = 0) in µ2

1+λ
θ and reaching the C axis (η = θ) in the

point
C0 θ = µ2θe−θ. (4.5)

For θ = 1, (4.2) and (4.3) define the set of the (C, D) plane where V ′ and V ′′ both
vanish, a situation encompassing the singular cases B1 and B2. In this case the
set can be decomposed in two regular curves originating from points (0, D0 1) and
(C0 1, 0) (where D0 1 and C0 1 are obtained putting θ = 1 in (4.4) and (4.5)). On
each of the two curves both C and D increase up to the point in which a cusp is
formed. The cusp coordinates are

Cm 1 =
µ2λ

1 + λ
e

1−λ
λ , (4.6)

Dm 1 =
µ2

λ(1 + λ)
eλ−1, (4.7)

corresponding to the value η = 1− 1
λ
, where both (4.2), (4.3) with θ = 1 take their

maximum, and lying on the curve

CλD =

(

µ2

1 + λ

)1+λ

λλ−1 (4.8)

which expresses the property infη V ′′ = 0 (eliminate η between V ′′ = 0, V ′′′ = 0

and note that V (IV ) > 0).
In other words, the two branches of (4.2), (4.3) with θ = 1 correspond to case

B1 and bound (with the axes) the region A where C and D are such that V (C, D, η)
has a maximum. The points satisfying (4.6)-(4.7) corresponds to case B2.

The complementary region B is divided in three subsets. In the subset lying
above the curve (4.8) the function V has only one minimum and no inflection points.
In the other two subsets the function V has one minimum and one non-horizontal
inflection point (see Figure 4.1).

To complete the study of (4.2) and (4.3) we may note that the maximum Cm,θ

of C and the maximum Dm,θ of D on the curve are reached for η = 1 − θ
λ

and for

η = θ − 1
λ
,

Cm θ = Cm 1e
θ−1

λ (4.9)

Dm θ = Dm 1e
λ(θ−1). (4.10)
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Note that Cm θ > Cm 1, Dm θ > Dm 1 for θ > 1 (the inequalities are reversed for
θ < 1).

Another property of the curves can be pointed out calculating the maximum of
the product CλD:

CλD =

(

µ2

1 + λ

)1+λ

(θ + λη)λ(θ − η) (4.11)

which is taken for η = θ(λ−1)
λ

and is precisely

(

CλD
)

max
=

(

µ2

1 + λ

)1+λ

λλ−1θλ (4.12)

Thus for θ > 1 all the curves have an arc lying above the curve (4.8). Indeed they
cross region A, the three regions B and their mutual interfaces, meaning that a
minimum with a selected curvature may occur in each of the situations described
by the various subsets.

It must be also remarked that for θ > 1 each of the curves (4.2), (4.3) has a
point of self-intersection, necessarily in the region A, meaning that the prescribed
curvature can be taken in either of the two minima.

In addition each curve carrying a given value of θ > 1 will intersect twice the
curves with other values of θ > 1, in the region A. For the sake of completeness we
can also observe that the conditions C > 0, D > 0 require θ > 0 (i.e. V ′′ cannot be
less then −µ2) and for θ ∈ (0, 1) the curves are entirely within the region A (not
shown in Figure 4.2).

We also remark that T is not defined on the axes (one population case) outside
the closure of the region A (C > µ2e−1 for D = 0, and D > µ2λ−1e−1 for C = 0).

The information now available about the family of curves in the quarter plane
C > 0, D > 0 carrying a prescribed curvature at the minimum (or in one of the
minima) of V (C, D, η) allows us to draw some conclusions concerning the existence
of class k solutions. It is enough to recall Proposition 3.2 and the fact that the
semiperiod T ? of the linearized oscillations around a minimum point η? of V is

T ? = π [V ′′(η?)]
− 1

2 .

Theorem 4.1. In the closure of region B class k solutions exist on the set of curves
satisfying

θ − 1 <

(

kπ

µ

)2

(4.13)

for suitable levels of the “energy” E.
In region A, besides the class k solutions (for all k) that can be found for suffi-

ciently large values of E, there will be at least two more solutions in the subset in
which two curves both carrying values of θ such that

θ − 1 >

(

kπ

µ

)2

(4.14)

intersect each other. The existence of at least one more solution is instead guar-
anteed in the set of the intersections of one curve of type (4.13) and one of type
(4.14).

From the analysis made at the end of section 3, it comes out that a particular
role is played by the curve carrying the value of V ′′ at the minimum corresponding
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Figure 4.1: In region A function V (C, D, ·) has two minima and one maximum. In
region B there is just one minimum. Region B is crossed by thecurve defined by
inf V ′′ = 0 (dashed); above this curve V (C, D, ·) has not inflection points.
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inf V ′′ = 0

Figure 4.2: Curves defined by V ′′ = (1 − θ)µ2, V ′ = 0 for θ ≥ 1.
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Figure 4.3: Curves of Figure 4.2 satisfying conditions (4.13) and (4.13) for k = 1.
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to the semiperiod 1 of the small oscillations, i.e. 2π2. Hence we are interested in

the curve labelled by θ = θ0 = 1 + 2π2

µ2 , which is a kind of separatrix. For θ > θ0

the semiperiod defined above is less than 1, for θ < θ0 it is greater than 1.
Thus we arrived at the following conclusions:

Theorem 4.2. (i) class 1 solutions are associated to the subset of the closure of
region A crossed by the curves (4.2), (4.3) with θ < θ0

(ii) class 1 solutions are associated to the subset of region B crossed by the curves
(4.2), (4.3) with θ > θ0.

However we remark that these conditions are only sufficient for the existence of
class 1 solutions, since they are based only on the comparison of asymptotic cases
with the small oscillations at minimum and on a continuity argument.

5. Bifurcation thresholds for the total cellular mass

The analysis performed in the previous section provides only a partial answer to
the problem, because we only found sufficient conditions for the existence of class
k solutions, at least with some multiplicity.

The limit of such analysis is the lack of information on how the semiperiod
T depends on E, for fixed C, D. Although it can be seen that ∂T

∂E
is bounded

when T is not singular, such a dependence looks too complicated to be investigated
thoroughly. However, if we organize the class of functions V (C, D, η) according to
a different criterion, we can focus our attention on another physically significant
question: what is the minimal total (rescaled) cellular mass compatible with the
existence of a class k solution ? As a matter of fact, we will prove that this quantity
plays the role of a bifurcation parameter.

By total rescaled mass we mean the sum

MTOT = Ma +
1

λ
Mb (5.1)

where

Ma = C

∫ 1

0

eη(x) dx, Mb = D

∫ 1

0

e−λη(x) dx (5.2)

represent the nondimensional masses of the two populations, according to (2.22),
(2.23).

The main result of this section is the following

Theorem 5.1. Class k solutions bifurcate from the set of constant solutions at the
following values of the rescaled total mass:

Mk = k2π2 + µ2 for λ ≤ 1, (5.3)

Mk =
k2π2 + µ2

λ2
for λ > 1. (5.4)

The proof of this theorem requires several intermediate results and will be pre-
sented at the end of the section. The first step is the following lemma.

Lemma 5.1. For any given pair η0,η1, η0 < η1, there exists C0(η0, η1) such that
for any C > C0, ∃! D > 0 such that V (C, D, η) satisfies

V (C, D, η0) = V (C, D, η1), (5.5)

V (C, D, η) < V (C, D, η0), η ∈ (η0, η1). (5.6)
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Proof. From now on whenever this is not misleading we simply denote V (C, D, η)
by V (η).

Imposing (5.5) yields

D

λ
= Γ(η0, η1) + C∆(η0, η1) (5.7)

with

Γ(η0, η1) =
µ2

2

η2
1 − η2

0

e−λη0 − e−λη1
, (5.8)

∆(η0, η1) =
eη1 − eη0

e−λη0 − e−λη1
. (5.9)

Both (5.6) and the condition D > 0 may require further limitations on C, besides
C > 0.

Clearly, D > 0 is guaranteed by

C > − Γ

∆
. (5.10)

This condition is absorbed by C > 0 when Γ > 0 (i.e. η0 < 0 and η0 < η1 < −η0),
otherwise it is stronger than C > 0.

Inequality (5.6) is equivalent to

C

[

e−λη − e−λη1

e−λη0 − e−λη1
− g(η)

]

< − Γ

∆

[

η2 − η2
0

η2
1 − η2

0

− g(η)

]

(5.11)

where

g(η) =
e−λη0 − e−λη

e−λη0 − e−λη1
. (5.12)

The quantity in square brackets multiplying C in (5.11) is negative in (η0, η1), since
it vanishes for η = η0,η = η1, and its second derivative is positive. So the l.h.s. in
(5.11) is negative for all C > 0, while the r.h.s. can assume either sign. Elementary
calculations show that the ratio

−Γ

[

η2−η2
0

η2
1
−η2

0

− g(η)
]

[

e−λη−e−λη1

e−λη0−e−λη1
− g(η)

]

is bounded and we denote its supremum in (η0, η1) by H(η0, η1).
Thus the inequalities C > 0, (5.10) and (5.11) are simultaneously fulfilled pro-

vided that C > C0(η0, η1) with

C0(η0, η1) =
1

∆
max

{

[−Γ]
+

, H
}

(5.13)

[·]+ denoting the positive part. Thus the lemma is proved.

In this way, for each ordered pair (η0, η1) we have constructed a one-parameter
family of functions satisfying (5.5),(5.6) which we denote simply by Vc(η):

Vc(η) = −1

2
µ2η2 + Ceη + [Γ(η0, η1) + C∆(η0, η1)] e

−λη (5.14)
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Now we consider the increasing branch of the oscillation from η0 to η1, generated
by Vc(η), whose semiperiod is

T (C, η0, η1) =
1√
2

∫ η1

η0

dη
√

Vc(η0) − Vc(η)
. (5.15)

The following lemma points out the advantage of this approach.

Lemma 5.2. For any C > C0(η0, η1) T is differentiable with respect to C and

∂T

∂C
< 0. (5.16)

Moreover
lim

C→+∞
T (C, η0, η1) = 0. (5.17)

Proof. From (5.14)
∂Vc(η)

∂C
= eη + ∆(η0, η1)e

−λη , (5.18)

so that we can write

∂Vc(η0)

∂C
− ∂Vc(η)

∂C
= −(eη1 − eη0)

[

eη − eη0

eη1 − eη0
− g(η)

]

. (5.19)

We already know that the factor in square brackets is negative for η ∈ (η0, η1).
Moreover, its first derivative takes non-zero values in η0 and η1. As a consequence,
we may differentiate (5.15):

∂T

∂C
= − 1

2
√

2

∫ η1

η0

(

∂Vc(η0)

∂C
− ∂Vc(η)

∂C

)

(Vc(η0) − Vc(η))−
3
2 dη (5.20)

(the integral is still convergent), and (5.16) is proved.

In order to prove (5.17) it is enough to remark that (Vc(η0)−Vc(η))−
1
2 tends to

zero as 1√
C

uniformly in each closed interval contained in (η0, η1).

As a corollary, we can say that

T̄ (η0, η1) = sup
C>C0(η0,η1)

T (C, η0, η1) (5.21)

is also the limit of T (C, η0, η1) as C ↓ C0(η0, η1).

Another consequence is that monotonicity provides now a necessary and suffi-
cient condition for existence:

Theorem 5.2. The condition

T̄ (η0, η1) >
1

k
(5.22)

is necessary and sufficient for the existence of precisely one class k solution char-
acterized by the extreme values η0, η1.
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Suppose now that (5.22) is satisfied for some k ∈ N, with η0, η1 given. We know
that there exists one and only one Ck(η0, η1) > C0(η0, η1) and correspondingly one
and only one Dk(η0, η1) > 0, such that the potential Vck

produces an oscillation
between η0 and η1 with semiperiod 1

k
.

We want to study the dependence of Ck and Dk on η1.

Lemma 5.3. Suppose (5.22) is fulfilled for η1 ∈ (η0, η0 + ζ) for some ζ > 0 and
η0 given. Then the functions Ck(η0, η1), Dk(η0, η1) are differentiable with respect
to η1 in (η0, η0 + ζ) with positive derivatives.

Proof. Setting y = η−η0

η1−η0
, we write (5.15) in the form

1

k
= T (Ck, η0, η1) =

1

k
(η1 − η0)

∫ 1

0

{

µ2

2

[

(η1 − η0)
2y2 + 2(η1 − η0)y

]

+

Ckeη0(1 − e(η1−η0)y) + (Γ + Ck∆)e−λη0(1 − e−λ(η1−η0)y
}− 1

2

dy. (5.23)

We can read it in the form

1

k
= T (Ck, η0, η1) =

1

k

∫ 1

0

1
√

y(1 − y)
F (y, η0, η1, Ck(η0, η1)) dy

with F bounded and with bounded derivatives with respect to η1 and Ck . This
proves the existence of ∂Ck

∂η1
.

Now take η′
1 > η1 and compare Ck(η0, η1) and Ck(η0, η

′
1), which are constructed

in such a way to produce the semiperiod 1
k

in the respective intervals (η0, η1),
(η0, η

′
1). This implies that the difference VCk

(η0) − VCk
(η) cannot be greater or

equal to the corresponding difference for the potential associated to the coeffi-
cient Ck(η0, η

′
1). Remembering (5.19) we conclude that this would be the case

if Ck(η0, η1) ≥ Ck(η0, η
′
1). Therefore only the option Ck(η0, η1) < Ck(η0, η

′
1) is left.

Now we differentiate the equality VCk
(η0) = VCk

(η) with respect to η1, obtaining

∂Ck

∂η1
eη0 +

1

λ

∂Dk

∂η1
=

∂VCk
(η)

∂η |η=η1

+
∂Ck

∂η1
eη1 . (5.24)

We have seen that ∂Ck

∂η1
≥ 0 and we know that

∂VCk

∂η |η=η1

> 0. Hence ∂Dk

∂η1
> 0. Since

we can exchange the role of Ck and Dk, we actually have also ∂Ck

∂η1
> 0.

In view of Theorem 5.2, The following result is obviously interesting

Theorem 5.3. The limit for η1 → η0+ of the function T̄ (η0, η1), defined by (5.21),
is bounded if and only if η0 < 1

λ
, or η0 > 1.

Proof. Recalling (5.13), two cases must be distinguished:

(I) H(η0, η1) ≥ [−Γ]+, i.e. C0(η0, η1) = H
∆ ,

(II) H(η0, η1) < [−Γ]+, i.e. C0(η0, η1) = [−Γ]+

∆ .
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In case (I) the constraint (5.6) is active, meaning that VC0(η0,η1) takes a maximum
in (η0, η1) whose values equals VC0(η0,η1)(η0). Thus for C → C0(η0, η1)+ the limit

of T (C, η0, η1), i.e. T̄ (η0, η1), is +∞.
In the second case (5.6) is guaranteed for all C ≥ C0, while C → C0+ makes D

tend to zero. Therefore T̄ (η0, η1) will be finite.
We keep this in mind while analyzing the limit η1 → η0+.
Let us define:

H(η0) = lim
η1→η0+

H(η0, η1)

∆(η0, η1)
. (5.25)

We can easily see that

H(η0) = µ2 1

1 + λ
(1 + λη0)e

−η0 (5.26)

(the limits of −Γ, ∆ are µ2

λ
µ0e

λη0 and 1
λ
e(1+λ)η0 , respectively, while the limit of the

ratio
[

η2−η2
0

η2
1
−η2

0

− g(η)
]

/
[

eη−e
η
0

e
η
1
−e

η
0

− g(η)
]

is 1
η0

1+λη0

1+λ
).

Similarly we may compute

K(η0) = lim
η1→η

+

0

[Γ]+

∆
(5.27)

which turns out to be

K(η0) = 0 for η0 ≤ 0, K(η0) = µ2η0e
−η0 for η0 > 0. (5.28)

The limit of T̄ (η0, η1) will be finite if and only if limη1→η0+ C0(η0, η1) = K(η0), and
more precisely if and only if K(η0) > H(η0).

On the basis of (5.26), (5.28) the latter inequality is satisfied for η0 < − 1
λ

and
for η0 > 1.

Remark 5.1. According to (5.28) we have that for η1 sufficiently close to η0 the
following facts hold:

(i) for η0 < − 1
λ
, C0(η0, η1) is zero, i.e. C can be taken arbitrarily close to zero.

Since in addition in the limit η1 → η0+ the relationship (5.7) between C and
D becomes

D = −µ2η0e
λη0 + e(1+λ)η0C. (5.29)

D has the positive lower bound D ≥ µ2|η0|eλη0 , in the case we are considering.

(ii) For η0 > 1, in the limit η1 → η0+, the requirement D > 0 acts as a constraint
on C, namely C > µ2η0e

−η0 , which is precisely C > K(η0). In that case,
taking C close to K(η0) corresponds to having D small.

We can now calculate T0(η0) = limη1→η0+ T̄ (η0, η1) when it is bounded.
First we examine the case

(i) η0 < −1
λ

.

In the limit η1 → η0+, from (5.14) we get

lim
η1→η0+

Vc(η) ≡ V̄c(η) = −1

2
µ2η2 + Ceη +

1

λ

[

−µ2η2eλη0 + Ce(1+λ)η0

]

e−λη.

(5.30)
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Of course V̄ ′
c (η0) = 0 by construction, and

V̄ ′′
c (η0) = −(1 + λη0)µ

2 + (1 + λ)Ceη0 . (5.31)

For C = K(η0) = 0 we find

V̄ ′′
K(η0)

(η0) = −(1 + λη0)µ
2 > 0 (5.32)

and the corresponding semiperiod of the linearized oscillations is

T0(η0) =
π

µ
√

|1 + λη0|
, η0 < − 1

λ
. (5.33)

(ii) Similarly, in case, η0 > 1 we use C = K(η0) = µ2η0e
−η0 in (5.31), obtaining

V̄ ′′
K(η0)(η0) = µ2(η0 − 1) (5.34)

with the corresponding semiperiod

T0(η0) =
π

µ
√

η0 − 1
, η0 > 1. (5.35)

For C > K(η0) in (5.30) the semiperiod T0C(η0) of the linearized oscillations is less
than T0(η0).

In connection with Theorem 5.4 this allows to obtain the following result, which
add some information about the existence question.

Theorem 5.4. If T0(η0), given either by (5.33) or by (5.35), is greater than 1
k
,

then for η1 sufficiently close to η0 we can find one unique Ck(η0, η1) to which a
class k solution is associated.

The analysis above facilitates the proof of Theorem 5.1, as pointed out by the
following lemma.

Lemma 5.4. Suppose that for a given η0 there exists a class k solution for each
η1 in some interval I = (η0, η0 + ε), to which we associate the total rescaled mass
(recall (5.1) and (5.2))

Mk(η0, η1) = Ma +
1

λ
Mb. (5.36)

Then
M̄k(η0) ≡ inf

η1∈I
Mk(η0, η1) = lim

η1→η0+
Mk(η0, η1). (5.37)

Proof. A simple expression of Mk(η0, η1) is

Mk(η0, η1) =

∫ 1

0

[

VCk

(

η(x)
)

+
1

2
µ2η2(x)

]

dx. (5.38)

Using

η′(x) =
√

2 [VCk
(η0) − VCk

(η)]
1
2 (5.39)
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we transform the integral (5.38) to

Mk(η0, η1) =
k√
2

∫ η1

η0

VCk
(η) + 1

2µ2η2

√

VCk
(η0) − VCk

(η)
dη. (5.40)

Adding and subtracting VCk
(η0) to the numerator in the integral and remembering

that
1√
2

∫ η1

η0

dη
√

VCk
(η0) − VCk

(η)
=

1

k

by definition of Ck(η0, η1), we obtain

1

k
Mk(η0, η1) =

1

k
VCk

(η0) −
1√
2

∫ η1

η0

√

VCk
(η0) − VCk

(η) dη+

µ2

2
√

2

∫ η1

η0

η2

√

VCk
(η0) − VCk

(η)
dη. (5.41)

Introducing

ZCk
(η) =

1√
2

∫ η

η0

1
√

VCk
(η0) − VCk

(ζ)
dζ, (5.42)

the last term in (5.41) can be written as

µ2

2

∫ η1

η0

η2Z ′
Ck

(η) dη (5.43)

and it can be integrated by parts, yielding

µ2

2
η2ZCk

(η)

∣

∣

∣

∣

η1

η0

− µ2

∫ η1

η0

ηZCk
(η) dη. (5.44)

Noting that ZCk
(η0) = 0, ZCk

(η1) = 1
k
, we arrive at the following expression

1

k
Mk(η0, η1) =

1

k
VCk

(η0) −
1√
2

∫ η1

η0

√

VCk
(η0) − VCk

(η) dη

+
1

2k
µ2η2

1 − µ2

∫ η1

η0

ηZCk
(η) dη. (5.45)

Since ZCk
(η) < 1

k
for η ∈ (η0, η1), we see that

Mk(η0, η1) > mk(η0, η1), η1 ∈ I., (5.46)

with

mk(η0, η1) = VCk
(η0) −

1√
2

∫ η1

η0

√

VCk
(η0) − VCk

(η) dη +
1

2
µ2η2

0 (5.47)
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Moreover
lim

η1→η0+
Mk(η0, η1) = lim

η1→η0+
mk(η0, η1). (5.48)

Let us differentiate (5.47) with respect to η1:

∂mk

∂η1
=

1

2

(

∂Ck

∂η1
eη0 +

1

λ

∂Dk

∂η1
e−λη0

)

+
k

2
√

2

∫ η1

η0

∂Ck

∂η1
eη + 1

λ
∂Dk

∂η1
e−λη

√

VCk
(η0) − VCk

(η)
dη, (5.49)

where we have used once more that the semiperiod is 1
k
.

Thanks to Lemma 5.5 we may conclude that ∂mk

∂η1
> 0. At this point (5.37)

follows from (5.46) and (5.48).

This result brings us very close to the proof of Theorem 5.1, since the bifurcation
values for the total biomasses will just be the inf of M̄k(η0).

Proof of Theorem 5.1. In order to compute M̄k(η0) we must perform the limit η1 →
η0+ in (5.41).

First of all we need to know the limit of Ck(η0, η1).
We can derive it indirectly by imposing that the limit potential, that we denote

by Vk(η), has a minimum in η0 and that the linearized oscillations around it have
semi-period 1

k
. We satisfy V ′

k(η0) = 0 automatically taking Vk in the form (5.30),

where C = C̄k(η0) = limη1→η0+ Ck(η0, η1). The second condition takes the form

V ′′
k (η0) = (kπ)2, (5.50)

which defines

C̄k(η0) =
e−η0

1 + λ

[

(kπ)2 + (1 + λη0)µ
2
]

. (5.51)

At this point we perform the limit in (5.41), obtaining 1
k
M̄k(η0) = 1

k
Vk(η0)+

µ2

2k
η2
0 =

1
k

[

C̄k(η0)e
η0(1 + 1

λ
) − µ2

λ
η0

]

, which leads to the desired expression

M̄k(η0) =
1

λ

[

(kπ)2 + µ2 + µ2(λ − 1)η0

]

. (5.52)

A first consequence is that for λ = 1 the total mass M̄k is independent of η0, so
that

inf M̄k(η0) = (kπ)2 + µ2, for λ = 1. (5.53)

When λ 6= 1 we must look for the extreme admissible values of η0, by imposing that
C̄k(η0) > 0 and that D̄k(η0) > 0, with (see (5.29))

D̄k(η0) =
1

1 + λ

[

(kπ)2 + µ2 − µ2η0

]

eλη0 . (5.54)

We conclude that η0 is allowed to vary in the interval
(

− 1

λ
− 1

λ
(
kπ

µ
)2, 1 + (

kπ

µ
)2

)

.

Hence, for λ > 1

inf M̄k(η0) =
(kπ)2 + µ2

λ2
(5.55)
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and for λ < 1
inf M̄k(η0) = (kπ)2 + µ2. (5.56)

Thus the theorem is proved, extending the results of [27] for the one population
model.

Remark 5.2. In the course of the proof above we have seen that the admissible val-
ues of η0 corresponding to the existence of a solution which is the limit of class k so-

lutions in (η0, η1) when η1 → η0+, belong to the interval
(

− 1
λ
− 1

λ
(kπ

µ
)2, 1 + (kπ

µ
)2

)

.

One could ask how this result is related to Theorem 5.6, saying that limη1→η0+ T̄ (η0, η1)
is bounded for η0 < − 1

λ
or η0 > 1.

In order to understand this detail, let us draw the following curves in the half
plane −∞ < η0 < +∞, C > 0 (see Figure 5.1):

(1) C = C̄k(η0), i.e. the graph of (5.51);

(2) C = −µ2η0e
λη0 + e(1+λη0), i.e. D = 0;

(3) V ′′
C (η0) = 0, i.e. C = µ2 1+λη0

1+λ
e−η0 .

The arc (3) is the singularity set of T . The points (η0, C) we have used in the
proof lie on the arc (1), which has a positive distance from (3) for all k ∈ N.

C

η01 1 + (kπ
µ

)2− 1
λ

− 1
λ
− 1

λ
( kπ

mu
)2

(1)

(3)
(2)

Figure 5.1: Sketch of Remark 5.2.
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6. Additional results.

In Theorem 5.1 the situation corresponding to the presence of only one minimum
of V (region B) is not fully described because T is generally not monotone in E.
Still on the basis of Propositions 3.4 and 3.5 we can assert the following.

For each (C, D) ∈ R
2
+, let (Vmin, +∞) be the range of V (C, D, η) and define

Ts(C, D) = supE∈(Vmin,+∞) T (C, D, E). The existence of class k solution is guar-

anteed for the pair (C, D) starting from kmin(C, D) = min{k ∈ N : Ts(C, D) > 1
k
}.

Hence we can state the following theorem
Proposition 6.1. For 0 < Θ < +∞ consider the family of curves

ΓΘ = {(C, D) ∈ R
2
+|Ts(C, D) = Θ}.

For each k ∈ N the existence of class k solutions is guaranteed in the set Ωk =
∪Θ> 1

k
ΓΘ.

Note that Ts is unbounded for (C, D) ∈ Ā, so that Ā ⊂ Ωk for all k ∈ N. Also,
Ωk′ ⊂ Ωk′′ for k′′ > k′.

Clearly, for Θ large there will be curves ΓΘ lying in B below curve (4.8). For
such curves the maximum of T is taken for E ' Ei = V (ηi), ηi being the point of a
(nearly horizontal) inflection. Since most of the contribution to T (C, D, Ei) comes
from a small neighborhood of ηi, we can look for an approximation of T (C, D, Ei)
from below by computing the integral

I =
1√
2

∫ ηi+ε

ηi

dη
[

−V ′(ηi)(η − ηi) − 1
6V ′′′(ηi)(η − ηi)3

]
1
2

for ε suitably small, where we selected the case in which ηi is less than the coordinate
of the minimum of V , i.e. V ′(ηi) < 0, V ′′(ηi) = 0, V ′′′(ηi) < 0.

We are interested in the case c = −V ′(ηi) << 1. We put b = − 1
6V ′′′(ηi) and we

write

I =
1√
2b

∫ ε

0

dξ
√

αξ + ξ3
, with α =

6V ′(ηi)

V ′′′(ηi)
> 0.

If ε is such that ε << α, we can write

I '
√

2ε

c

.
Choosing ε = χ

√
α for some χ << 1, we see that

I = (2χ)
1
2 (bc)−

1
4 .

As a consequence of the latter formula it is of some interest to draw the lines

V ′ · V ′′′ = γ,

V ′′ = 0.

After some lengthly calculations we find the equations of the branch over which
|V ′| << 1:

C =
µ2

1 + λ
(1 + λη)e−η +

γλ

1 + λ

1

µ2(1 − λ + λη)
e−η
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D =
µ2

1 + λ
(1 − η)eλη +

γ

1 + λ

1

µ2(1 − λ + λη)
eλη

with λ > 4γ
µ2 . Now C > 0 requires

η ∈
(

− 1

λ
+

γ

λµ4
, 1 − 1

λ
− γ

λµ4

)

∪
(

1− 1

λ
,∞

)

,

while D > 0 if η < 1 − γ
µ4 with 1

λ
> 4γ

µ2 . Thus we have the restriction λ ∈ ( 4γ
µ2 , µ2

4γ
)

and η must vary in the set

(

− 1

λ
+

γ

λµ4
, 1 − 1

λ
− γ

λµ4

)

∪
(

1 − 1

λ
, 1 − γ

µ4

)

.

The two intervals correspond to the cases V ′ < 0, V ′′′ < 0 and V ′ > 0, V ′′′ > 0.
These lines can be continued above curve (4.8) considering that in the region

B near the vertex of the region A, for each (C, D) the maximum of T practically
corresponds to the semiperiod of the linearized oscillations near the minimum of V .
Thus we may approximate the curves ΓΘ with

V ′ = 0,

V ′′ = cµ2, with 0 < c << 1

i.e. with arcs of (4.48) with θ > 1 and close to 1.
By decreasing Θ the region ΩΘ expands. We can see that for any Θ > 0 ΩΘ is

bounded.
Let us explore the behavior of the semiperiod at points far from the origin,

setting e.g. D = δC, with δ > 0. Then for C large enough (more precisely

C >> max(µ2

2 , µ2

2
λ
δ
)), V ' C(eη + δ

λ
e−λη), V ′ ' −µ2η + C(eη − δe−λη). So

V has only one minimum occurring at ηmin such that eηmin ' δ
1

1+λ . Thus Vmin '
Cδ

1
1+λ

(

1 + 1
λ

)

:= Cf(δ). Taking E = ΛVmin = ΛCf(δ), Λ > 1, the semiperiod is
given by

T ' 1√
2

1√
C

∫ η1

η0

dη
√

Λf(δ) − (eη + δ
λ
e−λη)

,

and since η0, η1, the roots of V (η) = E, do not depend on C, T tends to zero in all
radial directions.

7. Numerical experiments

In this final section we will show numerical simulations to illustrate the behavior
of the solutions of system (2.5)-(2.8).

To this end we computed the solution of the evolution problem whose asymptotic
limit for long time is expected to satisfy (2.5)-(2.8). The result appears to depend
on the total mass in a critical way. Figures 7.1-7.3 are obtained with the same
choice of parameters but with a decreasing initial mass of the populations: in the
Figure 7.1 the non stationary system tends to a 3−class solution; in Figure 7.2,with
a smaller initial mass, the asymptotic limit is a 2 − class solution whereas for an
even smaller initial data the initial deviation from constant equilibrium solutions
vanishes asymptotically (shown in Figure 7.3). In Figure 7.4 the corresponding
plots of p and q are shown.
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Figure 7.1: Ma = Mb = 21.
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Figure 7.5: Regions in the (η0, η1) plane where k-class solutions exist.

Figure 7.5 shows regions in the η0, η1 plane where class k solutions exist. Ac-
cording to Theorem 5.1 above the curve (i) only k-class solutions with k ≤ i can be
found; all the bifurcation points lie on η0 = η1 (corresponding to constant solutions).

Finally Figures 7.6 (a),(b) show Ma and Mb versus (η0, η1); Figure 7.6 (c) em-
phasizes a rather peculiar behaviour of Ma + 1

λ
Mb that seems to depend only on

η1 − η0.
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